524 Chemistry Letters 2001

## Formation and Growth of Spinel-type LiMn<sub>2</sub>O<sub>4</sub> Single Crystals by LiCl-MnCl<sub>2</sub> Flux Evaporation

Weiping Tang,\* Xiaojing Yang,† Hirofumi Kanoh,† and Kenta Ooi†
Research Institute for Solvothermal Technology, 2217-43 Hayashi-cho Takamatsu, 761-0301
†Marine Resources and Environment Research Institute, National Institute of Advanced Industrial Science and Technology,
2217-14 Hayashi-cho Takamatsu, 761-0395

(Received March 5, 2001; CL-010189)

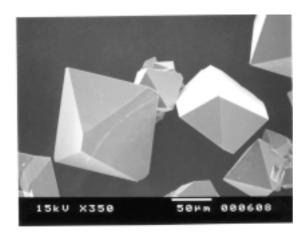
Octahedral and rectangle-like  $LiMn_2O_4$  single crystals larger than  $0.1 \times 0.1 \times 0.1$  mm<sup>3</sup> in size were synthesized by evaporating a melt of LiCl and  $MnCl_2$  at 750 °C. The nucleation and growth of the crystals proceeds on the wall of a pure alumina crucible. Phase analysis showed that purity of phase was affected by  $MnCl_2$  partial pressure.

LiMn<sub>2</sub>O<sub>4</sub> crystals, especially of millimeter size, are attractive as a model compound for the refinement of their crystal structure and for studying the diffusion process of Li<sup>+</sup> in the solid and at the solid-liquid interface. They are also expected to have applications as single crystal cathodes for micro-size rechargeable batteries or as Li<sup>+</sup>-sensors. LiMn<sub>2</sub>O<sub>4</sub> crystals, which generally have been prepared by a solid-state reaction, 1-4 or chemical processes such as hydrothermal reaction or sol-gel process, 5,6 are a polycrystalline material existing as a fine powder. We have prepared octahedral LiMn<sub>2</sub>O<sub>4</sub> crystals of a size larger than 20  $\mu m$  by using LiCl as a flux and  $\gamma\text{-MnOOH}$  as a Mn source. <sup>7,8</sup> Recently, an octahedral LiMn<sub>2</sub>O<sub>4</sub> crystal,  $30 \times 30$ × 30 μm in size, prepared by using LiCl as a flux and LiMn<sub>2</sub>O<sub>4</sub> powder as a starting material, has been used for the purpose of refining its crystal structure.9 However, LiMn<sub>2</sub>O<sub>4</sub> crystals of a much larger size are difficult to prepare using the flux system because of the low solubility of  $\gamma$ -MnOOH and LiMn<sub>2</sub>O<sub>4</sub>, and decomposition of LiMn<sub>2</sub>O<sub>4</sub> at temperatures above 800 °C in air.10

Evaporation of a chemical reagent or compound by heating has been reported to be useful for promoting crystal formation of ultrafine crystals such as  $Mg_2SiO_4$ , FeO, Fe $_3O_4$  and Cu $_2O$  ultrafine crystals. This method also results in the production of a crystal film on a substrate. In this study, we are interested in the promotion of  $LiMn_2O_4$  crystal growth by use of evaporation of  $MnCl_2$ –LiCl flux. Since  $MnCl_2$  and LiCl melts evaporate at a temperature above their melting points (606 °C for LiCl and 650 °C for  $MnCl_2$ ), the continuous evaporation supplies manganese and lithium sources to facilitate the growth of  $LiMn_2O_4$  crystals. By use of this method, we succeeded in obtaining for the first time  $LiMn_2O_4$  single crystals larger than  $0.1 \times 0.1 \times 0.1$  mm<sup>3</sup> in size. The formation reaction among vapor phases of  $MnCl_2$ , LiCl and atmospheric oxygen suggests a new route for preparation of spinel-type  $LiMn_2O_4$ .

MnCl<sub>2</sub> solution (2 mol·dm<sup>-3</sup>) was added to LiCl (50 g) to prepare a mixture of LiCl and MnCl<sub>2</sub>. The content of Mn in the mixture was adjusted to 4–18 mmol in 2 mmol steps. Each mixture was then dried at 180 °C for 3 h. After grinding, the mixture was placed in a pure alumina crucible (150 mL in volume), and then covered with a 40-g layer of LiCl to prevent sudden evaporation and oxidation of MnCl<sub>2</sub> during the heating process. The crucible with cap in place was set in a muffle

electric furnace and heated at 750 °C for 58 h. Polyhedral  ${\rm LiMn_2O_4}$  crystals, black-colored with a glossy surface, were formed on the wall of the crucible above the LiCl melt (i.e., the crucible-wall/LiCl-melt/air interface), arranged as a band with a width of about 5 mm for all Mn contents. The melt was dissolved in distilled water, and the  ${\rm LiMn_2O_4}$  crystals were obtained after washing and filtering.


The X-ray diffraction (XRD) analyses of the product were carried out using a Rigaku type RINT2100VPC X-ray diffractometer with a vertically moveable gonio-axis. The SEM observation was carried out on JEOL type JSM-5310 scanning electron microscope. Lithium and manganese contents of the LiMn<sub>2</sub>O<sub>4</sub> crystals were determined by atomic absorption spectrometry after dissolving the crystals in a mixed solution of HCl and  $\rm H_2O_2$ . The available oxygen for LiMn<sub>2</sub>O<sub>4</sub> crystals was determined by the standard oxalic method, <sup>14</sup> from which the mean oxidation number of manganese ( $\rm Z_{Mn}$ ) and oxygen content were calculated. The chemical formula was calculated from manganese and lithium contents and  $\rm Z_{Mn}$ .

The crystal phase, shape, size and yield obtained for different Mn contents are summarized in Table 1. The XRD analysis of the products indicated sharp diffraction peaks of a single  $\text{LiMn}_2\text{O}_4$  phase in the range of 8 to 12 mmol of Mn content. The chemical formula of  $\text{LiMn}_2\text{O}_4$  obtained at 8 mmol of Mn content was  $\text{Li}_{1.03}\text{Mn}_{1.97}\text{O}_4$  on the base of chemical analysis results, which is very close to the theoretical formula of  $\text{LiMn}_2\text{O}_4$ . The yield and size of the crystals increased with an increase of the Mn content. However, changing the Mn content ranges yielded some by-products. The crystal shape also changed with the Mn content. Octahedral  $\text{LiMn}_2\text{O}_4$  single crystals were obtained at 4 and 6 mmol of Mn content; octahedral and rectangular  $\text{LiMn}_2\text{O}_4$  single crystals at 8 to 12 mmol of Mn content. These crystals had smooth surfaces with sizes larger than  $0.1\times0.1\times0.1$  mm³. The SEM photograph at the top of

**Table 1.** The crystal phase, shape, size and yield obtained at different Mn contents

| Mn content<br>/mmol  | 4                                                                      | 6    | 8                                | 12   | 14                                                                   | 18   |
|----------------------|------------------------------------------------------------------------|------|----------------------------------|------|----------------------------------------------------------------------|------|
| Crystal phase        | LiMn <sub>2</sub> O <sub>4</sub><br>+ Li <sub>2</sub> MnO <sub>3</sub> |      | LiMn <sub>2</sub> O <sub>4</sub> |      | LiMn <sub>2</sub> O <sub>4</sub><br>+ Mn <sub>2</sub> O <sub>3</sub> |      |
| Shape                | octahedral                                                             |      | octahedral,<br>rectangular       |      | pillar<br>polycrystal                                                |      |
| Size/mm <sup>3</sup> | 0.1 <b>x</b> 0.1 <b>x</b> 0.1                                          |      | 0.1x0.1x0.1                      |      | 0.9x0.5x0.5                                                          |      |
| Yield/g              | 0.10                                                                   | 0.15 | 0.18                             | 0.26 | 0.31                                                                 | 0.39 |

Chemistry Letters 2001 525



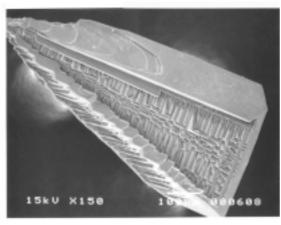



Figure 1. SEM images of  $LiMn_2O_4$  crystals obtained at 8 mmol (top) and 18 mmol (bottom) of Mn contents.

Figure 1 shows the crystals obtained at 8 mmol of Mn content. Some crystal combinations were larger than  $0.9 \times 0.5 \times 0.5 \text{ mm}^3$  for 18 mmol of Mn content, but consisted of some arrangement of single crystals, as shown at the bottom of Figure 1.

The formation of the  $LiMn_2O_4$  crystals on the wall of the crucible above the LiCl melt can be explained by characterizing the evaporation of the  $MnCl_2$ –LiCl melt. The evaporation of LiCl and  $MnCl_2$  throughout the covered LiCl layer at 750 °C supplies sources of vapor phases of manganese and lithium in the space of the crucible. The reaction, whereby  $LiMn_2O_4$  forms from LiCl and  $MnCl_2$  vapor phases, can be written as follows:

$$LiCl(g) + 2MnCl_2(g) + 2O_2(g) \rightarrow LiMn_2O_4(s) + 5/2Cl_2(g)$$
 (1)

where the notations (g) and (s) refer to the species in the gas and solid phases, respectively. The reaction implies that oxygen in the atmosphere is need to oxidize  $Mn^{2+}$  to  $Mn^{3+}$  and  $Mn^{4+}$  and to form the spinel phase by reduction of chloride ions. This suggests a new route for preparing spinel-type  $LiMn_2O_4$  crystals. This route may be also expected to produce ultrafine  $LiMn_2O_4$  powder and crystal thin film by selecting the reaction field.

Reaction (1) shows that the formation of  $\operatorname{LiMn_2O_4}$  corresponds to partial pressure of  $\operatorname{LiCl}$ ,  $\operatorname{MnCl_2}$  vapor and atmospheric oxygen. In the present case, the formation of  $\operatorname{LiMn_2O_4}$  by reaction (1) is sensitive to changes in the partial pressure of  $\operatorname{MnCl_2}$ ,  $P_{\operatorname{Mn}}$ , and atmospheric oxygen only because a great excess of  $\operatorname{LiCl}$  flux makes the  $\operatorname{LiCl}$  partial pressure almost constant. As shown in Table 1, a pure  $\operatorname{LiMn_2O_4}$  crystal phase could be obtained at  $P_{\operatorname{Mn}}$  to some extent in the crucible space, where the  $P_{\operatorname{Mn}}$  was controlled by the content of  $\operatorname{MnCl_2}$  (8–12 mmol) in the batch. At low  $\operatorname{Mn}$  contents of 4 and 6 mmol, a low  $P_{\operatorname{Mn}}$  facilitates the nucleation and growth of  $\operatorname{Li_2MnO_3}$  crystal through the reaction,  $\operatorname{2LiCl} + \operatorname{MnCl_2} + \operatorname{3/2O_2} \to \operatorname{Li_2MnO_3} + \operatorname{2Cl_2}$ ; whereas at high  $P_{\operatorname{Mn}}$  (when  $\operatorname{MnCl_2}$  content ranges from 14 to 18 mmol), the nucleation and growth of  $\operatorname{Mn_2O_3}$  are promoted through the reaction,  $\operatorname{2MnCl_2} + \operatorname{3/2O_2} \to \operatorname{Mn_2O_3} + \operatorname{2Cl_2}$ .

The growth of  $LiMn_2O_4$  located on the crucible-wall/LiCl-melt/air interface can be explained by the easy heterogeneous nucleation of  $LiMn_2O_4$  on the solid/melt/air interface,<sup>15</sup> similar to the growth of  $Li_2MnO_3$  plate crystals we have previously reported.<sup>7</sup> The evaporation of LiCl and  $MnCl_2$  continuously supplies a source of manganese and lithium, which facilitates the growth of  $LiMn_2O_4$  crystals, accompanied by the oxidation of  $Mn^{2+}$  to  $Mn^{3+}$  and  $Mn^{4+}$  by atmospheric oxygen.

In conclusion, the evaporation of  $MnCl_2$ –LiCl flux is suitable for the preparation and growth of large spinel-type  $LiMn_2O_4$  single crystals. The partial pressures of  $MnCl_2$  and atmospheric oxygen in the space of the crucible play an important role in the formation and growth of the  $LiMn_2O_4$  crystals.

## **References and Notes**

- 1 X. M. Shen and A. Clearfield, *J. Solid State Chem.*, **64**, 270 (1986)
- K. Ooi, Y. Miyai, and S. Katoh, Sep. Sci. Technol., 22, 1779 (1987).
- 3 M. M. Thackeray, W. I. F. David, P. G. Bruce, and J. B. Goodenough, *Mater. Res. Bull.*, 18, 461 (1983).
- 4 T. Ohzuku, J. Kato, K Sawai, and T. Hirai, *J. Electrochem. Soc.*, **138**, 2556 (1991).
- 5 Q. Feng, K. Yanagisawa, and N. Yamasaki, *Chem. Commun.*, **1996**, 1607.
- 6 B. Ammundsen, D. J. Jones, J. Roziere, and G. R. Burns, *Chem. Mater.*, **9**, 3236 (1997).
- W. Tang, H. Kanoh, and K. Ooi, *Chem. Let.*, **2000**, 216.
- 3 X. Yang, W. Tang, H. Kanoh, and K. Ooi, J. Mater. Chem., 9, 2683 (1999).
- J. Akimoto, Y. Takahashi, Y. Gotoh, and S. Mizuta, *Chem. Mater*, 12, 3246 (2000).
- A. Yamada, K. Miura, K. Hinokuma, and M. Tanaka, J. Electrochem. Soc., 142, 1995 (1998).
- 11 C. Kaito, Y. Saito, K. Ohtsuka, and T. Watanabe, J. Geomag. Geoelectr., 45, 267 (1993).
- 12 C. Kaito, T. Watanabe, K. Ohtsuka, C. Fanyu, and Y. Saito, J. Cryst. Growth, 128, 103 (1993).
- 13 M. Aguilar, A. I. Oliva, R. Castro-Rodriguez, and J. L. Pena, *Thin Solid Films*, **293**, 149 (1997).
- 14 Japan Industrial Standard (JIS) M8233 (1969).
- 15 D. Turnbull, "Solid State Physic," ed. by F. Seitz and D. Turnbull, Academic Press, London (1956), vol. 3, pp.225–306.